skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Al_Qubaisi, Kenaish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate a Dual Active-Cavity RF modulator combining T-shaped spoked junction with a novel “half-rib” waveguide in a monolithic electronic-photonic platform. We measure a sideband efficiency of -52 dB at 66 GHz RF carrier frequency. 
    more » « less
  2. Optical phased arrays (OPAs) which beam-steer in two dimensions (2D) are currently limited to grating row spacings well above a half wavelength. This gives rise to grating lobes along one axis which limit the field of view (FOV), introduce return signal ambiguity, and reduce the optical efficiency in lidar applications. We demonstrate a Vernier transceiver scheme which uses paired transmit and receive phased arrays with different row periodicities, leading to mismatched grating lobe angular spacings and only a single aligned pair of transmit and receive lobes. This permits a return signal from a target in the desired lobe to be efficiently coupled back into the receive OPA while back-scatter from the other grating lobes is rejected, removing the ambiguity. Our proposal goes beyond previously considered Vernier schemes in other domains like RF and sound, to enable adynamic Vernierwhere all beam directions are simultaneously Vernier aligned, and allow ultra-fast scanning, or multi-beam, operation with Vernier lobe suppression. We analyze two variants of grating lobe suppressing beam-steering configurations, one of which eliminates the FOV limitation, and find the conditions for optimal lobe suppression. We present the first, to the best of our knowledge, experimental demonstration of an OPA Vernier transceiver, including grating lobe suppression of 6.4 dB and beam steering across 5.5°. The demonstration is based on a pair of 2D-wavelength-steered serpentine OPAs. These results address the pervasive issue of grating lobes in integrated photonic lidar schemes, opening the way to larger FOVs and reduced complexity 2D beam-steering designs. 
    more » « less
  3. We propose a novel photonic circuit element configuration that emulates the through-port response of a bus coupled traveling-wave resonator using two standing-wave resonant cavities. In this “reflectionless resonator unit”, the two constituent cavities, here photonic crystal (PhC) nanobeams, exhibit opposite mode symmetries and may otherwise belong to a single design family. They are coupled evanescently to the bus waveguide without mutual coupling. We show theoretically, and verify using FDTD simulations, that reflection is eliminated when the two cavities are wavelength aligned. This occurs due to symmetry-induced destructive interference at the bus coupling region in the proposed photonic circuit topology. The transmission is equivalent to that of a bus-coupled traveling-wave (e.g. microring) resonator for all coupling conditions. We experimentally demonstrate an implementation fabricated in a new 45 nm silicon-on-insulator complementary metal-oxide semiconductor (SOI CMOS) electronic-photonic process. Both PhC nanobeam cavities have a full-width half-maximum (FWHM) mode length of 4.28μm and measured intrinsic Q’s in excess of 200,000. When the resonances are tuned to degeneracy and coalesce, transmission dips of the over-coupled PhC nanobeam cavities of −16 dB and −17 dB nearly disappear showing a remaining single dip of −4.2 dB, while reflection peaks are simultaneously reduced by 10 dB, demonstrating the quasi-traveling-wave behavior. This photonic circuit topology paves the way for realizing low-energy active devices such as modulators and detectors that can be cascaded to form wavelength-division multiplexed links with smaller power consumption and footprint than traveling wave, ring resonator based implementations. 
    more » « less
  4. Integrated astrophotonic spectrometers are integrated variants of conventional free-space spectrometers that offer significantly reduced size, weight, and cost and immunity to alignment errors, and can be readily integrated with other astrophotonic instruments such as nulling interferometers. Current integrated dispersive astrophotonic spectrometers are one-dimensional devices such as arrayed waveguide gratings or planar echelle gratings. These devices have been limited to 10 4 resolving powers and <<#comment/> 1000 spectral bins due to having limited total optical delay paths and 1D detector array pixel densities. In this paper, we propose and demonstrate a high-resolution and compact astrophotonic serpentine integrated grating (SIG) spectrometer design based on a 2D dispersive serpentine optical phased array. The SIG device combines a 5.2 cm long folded delay line with grating couplers to create a large optical delay path along two dimensions in a compact integrated device footprint. Analogous to free-space crossed-dispersion high-resolution spectrometers, the SIG spectrometer maps spectral content to a 2D wavelength-beam-steered folded-raster emission pattern focused onto a 2D detector array. We demonstrate a SIG spectrometer with ∼<#comment/> 100 k resolving power and ∼<#comment/> 6750 spectral bins, which are approximately an order of magnitude higher than previous integrated photonic designs that operate over a wide bandwidth, in a 0.4 m m 2 footprint. We measure a Rayleigh resolution of 1.93 ±<#comment/> 0.07 G H z and an operational bandwidth from 1540 nm to 1650 nm. Finally, we discuss refinements of the SIG spectrometer that improve its resolution, bandwidth, and throughput. These results show that SIG spectrometer technology provides a path towards miniaturized, high-resolution spectrometers for applications in astronomy and beyond. 
    more » « less